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Abstract--The momentum transfer condition that applies at the boundary between a porous medium and 
a homogeneous fluid is developed as a jump condition based on the non-local form of the volume averaged 
momentum equation. Outside the boundary region this non-local form reduces to the classic transport 
equations, i.e. Darcy's law and Stokes' equations. The structure of the theory is comparable to that used 
to develop jump conditions at phase interfaces, thus experimental measurements are required to determine 
the coefficient that appears in the jump condition. The development presented in this work differs from 
previous studies in that the jump condition is constructed to join Darcy's law with the Brinkman correction 
to Stokes' equations. This approach produces a jump in the stress but not in the velocity, and this has 
important consequences for heat transfer processes since it allows the convective transport to be continuous 

at the boundary between a porous medium and a homogeneous fluid. 

1. INTRODUCTION 

The problem of momentum transport at the boundary 
between a porous medium and a homogeneous fluid 
occurs in a wide wtriety of technological applications 
and has therefore been the object of a great deal of 
study. The lubrication process associated with a 
porous bearing [1] provided the impetus for the orig- 
inal experimental study of Beavers and Joseph [2] in 
addition to numerous subsequent studies. The fluid 
mechanical process in the neighborhood of the inter- 
face between a spatially periodic porous medium and 
a homogeneous fluid has been analyzed by Larson 
and Higdon [3, 4] and by Sahraoui and Kaviany [5] 
in terms of the point equations, and recent mono- 
graphs on transport in porous media [6, 7] provide an 
extensive literature concerning this momentum trans- 
port process. 

To be specific about the problem under consider- 
ation, we refer to Fig. 1, in which we have shown a 
uniform flow parallel to a fluid-porous medium 
boundary. The homogeneous fluid occupies the q- 
region while the porous medium is identified as the ~o- 
region. We will use the phrases, homogeneous q-region 
and homogeneous to-region to refer to those portions 
of the q- and og-regions that are not influenced by the 
rapid changes in structure that occur in the boundary 

tAuthor to whom correspondence should be addressed. 

region. The system illustrated in Fig. 1 is analogous 
to that studied experimentally by Beavers and Joseph 
[2], and our objective is to develop the appropriate 
jump condition for momentum transport within the 
framework of the method of volume averaging. We 
have shown two averaging volumes in Fig. 1. One of 
these is spherical and is generally considered appro- 
priate for the study of multi-dimensional transport 
processes, while the other is planar and represents 
an acceptable averaging volume for one-dimensional 
processes. The theory will be presented in a fairly 
general context ; however, the simplifications that can 
be made for one-dimensional processes are important 
and one needs to keep in mind the two averaging 
volumes illustrated in Fig. 1. When the volume aver- 
aged equations in the homogeneous q-region are equi- 
valent to the point equations we can use standard tech- 
niques to develop the jump condition [8]. 

The governing differential equations and boundary 
conditions for the momentum transfer process in both 
the co- and q-regions are given by 

V'vp = 0 in the fl-phase (1) 

0 = - Vpa + pag + #pV2va in the fl-phase (2) 

B.C. 1 va = 0 at the fl-tr interface (3) 

B.C. 2 v p = 0  y = h  (4) 

B.C. 3 j ' ( v ~ )  = 0 y = - H .  (5) 

2635 



2636 J.A. OCHOA-TAPIA and S. WHITAKER 

A~a 

Ao, 

An 

A~n 

<S> 
D 

g 
h 
H 
I 
i,j 

Ks 

L~ 

Lvl 

L~ 

Lpa 

fp 

IIcon 

P 

P~ 
(p:>~ 
<p~>~ 

<p~> 

ro 

<T>~ 
<T>B 
v# 
van 

<vS 
<v~> 

<v~>~ 

NOMENCLATURE 

area of the/3-a interface contained 
within the averaging volume [m 2] 
total surface area of the large-scale 
averaging volume, ~//~ [m 2] 
that portion of ~¢o~ contained in the m- 
region [m 2] 
that portion of ~¢oo contained in the 
q-region [m 2] 
area of the m-q interface contained 
within ~ 
excess Brinkman stress [N m -2] 
diameter of the averaging volume 
having the form of a disk [m] 
gravity vector [ms -2] 
depth of fluid channel [m] 
depth of porous medium [m] 
unit tensor 
unit base vectors in the x- and 
y-direction, respectively. 
Darcy's law permeability tensor [m 2] 
Darcy's law permeability tensor in the 
homogeneous o~-region [m 2] 
characteristic length associated with 
the velocity [m] 
characteristic length associated with 
the gradient of the velocity [m] 
characteristic length associated with 
the porosity [m] 
characteristic length associated with 
the pressure gradient [m] 
characteristic length associated with 
the/3-phase in the m-region [m] 
unit normal vector directed from the 
/3-phase toward the a-phase 
unit normal vector directed from the 
m-region toward the q-region 
projection tensor 
pressure in the/3-phase [N m -2] 

intrinsic average pressure [N m 2] 
intrinsic average pressure in the 

~o-region IN m -2] 
intrinsic average pressure in the 
q-region [N m -2] 
ea(pa>~ superficial average pressure 
IN m -21 
radius of a spherical averaging volume 
[m] 
excess surface stress [N m -2] 
excess bulk stress [N m -2] 
velocity vector in the/3-phase [m s -I] 
fluid velocity vector in the q-region 
[m s-i] 
intrinsic average velocity [m s 1] 
e~(vp) ~ superficial average velocity 
[m s -1] 
superficial average velocity in the 
m-region [m s-1] 

(va) n superficial average velocity in the 
q-region [m s-1] 

<v~>s excess surface velocity [m s- ' ]  
x, y rectangular coordinates [m] 
x position vector locating the centroid of 

the averaging volume [m] 
y position vector relative to the centroid 

of the averaging volume [m] 
~/~ averaging volume [m 3] 
~ ~  large-scale averaging volume [m 3] 
V~, volume of the ~o-region contained in 

~ [m 3] 
V, volume of the q-region contained in 

~ / /  [m 3] 

V~ volume of the/3-phase contained 
within the averaging volume ~ [m3]. 

Greek symbols 
/3 the adjustable coefficient in the 

representation for the excess 
stress 

A thickness of a disk that represents an 
averaging volume [m] 

6 thickness of the interfacial region [m] 
e~ porosity or volume fraction of the 

/3-phase 
ea,o porosity in the homogeneous portion 

of the m-region 
2 unit tangent vector to the ~o-q interface 
pa viscosity of the/3-phase [Ns m -z] 
p~ density of the/3-phase [kg m 3]. 

Subscripts 
fl identifies a quantity associated with 

the r-phase 
flcr identifies a quantity associated with 

the fl-a interface 
q identifies a quantity associated with 

the q-region 
m identifies a quantity associated with 

the m-region 
o97 identifies a quantity associated with 

the 09-7 boundary 
e identifies a length scale associated with 

the porosity 
pl identifies a length scale associated with 

the gradient of the pressure 
s identifies a surface vector or tensor 
v identifies a length scale associated with 

the velocity 
vl identifies a length scale associated with 

the gradient of the velocity 
oo identifies a quantity associated with 

the large-scale averaging volume. 

Superscripts 
fl identifies an intrinsic volume average. 
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y = 0  

y =  - H  

Fig. 1. Flow of a homogeneous fluid parallel to a porous medium. 

Here we must remark that, while inertial effects may 
be negligible in the homogeneous co-region and in the 
homogeneous ~-region, it is possible that inertial effects 
will not be negligible in the boundary region. In that 
region the curvature of the streamlines will be of the 
order of the pore or particle diameter and this may 
lead to non-zero values of the inertial terms, pv- Vv. 

The boundary condition at y = - H  has been ex- 
pressed by equation (5) in a form that is suitable for use 
with Darcy's law, thus we have used <va) to represent 
the superficial volmne averaged velocity defined by 

I 
f v,(x+ya) dVy. <v~>lx = 7 J v ~  (6) 

Here V~(x) is the volume of the fl-phase contained 
within the averaged volume illustrated in Fig. 1. The 
position vectors used in equation (6) are identified in 
Fig. 2, where we have indicated that x represents the 
vector locating the centroid of the averaging volume, 
and that y~ represents the vector locating points in the 
fl-phase relative to the centroid. Equation (6) clearly 
indicates that volume averaged quantities are associ- 
ated with the centroid and that integration is carried 
out with respect to the components of y~. 

The boundary conditions given by equations (4) 
and (5) are an indication of the mismatch of length- 
scales that one often encounters in transport problems 
that involve a porous medium. The point boundary 
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Fig. 2. Position vectors associated with the averaging 
volume. 

condition given by equation (4) is based on the idea 
that the point velocity is continuous, while the volume 
averaged boundary condition represented by equation 
(5) is an approximation based on the idea that the 
interface at y = - H  is impermeable. The mismatch 
between point and volume averaged quantities at the 
interface between a porous medium and a homo- 
geneous fluid has been noted by various authors [7, 9, 
10] and good arguments have been put forth to sup- 
port the idea that volume averaged quantities should 
be continuous at boundaries that involve a porous 
medium. If one accepts continuity of the volume aver- 
aged velocity, it is not illogical to move one step fur- 
ther and make use of volume averaged transport equa- 
tions in both regions adjacent to the boundary between 
the porous medium and the homogeneous fluid. 
Under certain circumstances the point and volume 
averaged transport equations are equivalent and when 
this occurs the development of a jump condition is 
greatly simplified. 

1.1. Point and volume averaged quantities 
The volume averaged velocity in the t/-region can 

be expressed as 

<v,>lx = 1 f,~ v,(x+Ya) dVy (7) 

provided that the centroid is located far enough away 
from the boundary region so that the averaging vol- 
ume contains only the fl-phase, i.e. Va(x)= 3¢. A 
Taylor series expansion about the centroid allows us 
to express equation (7) as 

<v~>ix = ~ [ v , l x + Y ~  "Vv~lx 

+ ~y,y~ :VVv,[x + . - . ]  d Vy (8) 

and this immediately leads to 

(v,>]x = V, lx + <y~>" Vvelx +½(y,y,> : VVvelx 

+l<y~y,y~> iVVVv~lx + . . .  (9) 

Since y, is the position vector relative to the centroid 
of ~F" we have by definition 

<y~> = 0 (10) 

and if the averaging volume is a sphere or a disk as 
suggested in Fig. 1 we know that <y,ypy~> will also be 
zero. Thus, for most transport processes in homo- 
geneous fluids, equation (9) reduces to 

1 
(vp>lx = V~lx +~(y,y~>. VVv~lx. (~ 1) 

It should be clear that <ypy,> is on the order of r0 2 for 
a spherical averaging volume, thus we can express 
equation (11) as 

/ \ ro ~ 
<v~>lx = V~lx + O ~L~v)V~ I x (12) 

in which Lv and Lvl are characteristic lengths defined 
by 

= v vv ,: 

Here we have used Av, to represent the change in 
velocity that occurs over the distance Lv, and we have 
used A(Vv,) to represent the change in the velocity 
gradient that occurs over the distance Lye. From equa- 
tion (12) we see that the point velocity is equal to the 
volume average velocity in the ~/-region 

(vp>lx = v, lx inthe homogeneous ~/-region 

(14) 

when the following length-scale constraint is satisfied 

rg 
- -  << 1 in the homogeneous q-region, (15) 
L~m L~ 

One should keep in mind that this type of analysis 
does not apply to the co-region ; however, it does indeed 
apply to the r/-region and when equation (15) is sat- 
isfied the analysis of the jump condition is greatly 
simplified because a single volume averaged transport 
equation is valid in both the r/- and og-regions. 

For  the process illustrated in Fig. 1, the length-scale 
constraint given by equation (15) takes the form 

r0 ~ 
- -  << 1 (16 )  
h2 

and if we do not impose this constraint we cannot 
approximate the volume averaged velocity by the point 
velocity in the t/-region. For  the particular flow illus- 
trated in Fig. 1, the resolution of this dilemma is the 
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Fig. 3. Velocity profiles in the neighborhood of the interfacial 
region. 

use of a thin disk oriented parallel to the at-r/bound- 
ary. Under these circumstances the last term in equa- 
tion (11) can be estimated as 

(17) 

and we see that the volume averaged velocity will be 
equal to the point velocity in the homogeneous t/- 
region whenever the', following constraint is satisfied. 

A 2 << h 2. (18) 

While this constraint is easily satisfied in a theoretical 
sense, it may be difficult if not impossible to 
accomplish with an experimental technique such as 
nuclear magnetic resonance imaging [11, 12]. To be 
precise about the problem under consideration, we 
have sketched velocity profiles for <vp> = i.  <vp> in 
Fig. 3 for the case in which the point velocity is equal 
to the average velocity in the homogeneous t/-region. 
Here it becomes clear that we are developing a jump 
condition in the stress and requiring the velocity to be 
continuous at the ~o-t/ interface. In the next section 
we will develop the generally valid volume averaged 
momentum equation which describes <vp>, in addition 
to the special forms that are used to calculated <vp>o, 
and <v~>~. 

2. VOI.UME AVERAGING 

In addition to the superficial volume averaged vel- 
ocity defined by equation (7) we will need to make 
use of the intrinsic average velocity which is defined 
according to 

1 
<v'>/~lx = V-~ ]v~o,) vp(x+yp) dVy. (19) 

The superficial and intrinsic velocities are related by 

<vp> = c~<v~> ~ (20) 

in which it is understood that all average quantities 
are evaluated at the centroid located by x. In equation 
(20) we have used e~ to represent the porosity defined 
explicitly by 

e s = V/~U. (21) 

2.1. Continuity equation 
We begin our analysis with the continuity equation 

given by equation (1) and form the superficial average 
to obtain 

<V" v~> = O. (22) 

In order to interchange differentiation and integration 
in equation (22) we need to make use of the spatial 
averaging theorem [13] which can be expressed as 

<V~F~> = V<~F~> + ~ n~,,q-'~ dA (23) 

and when the vector form of this theorem is used with 
equation (22) we obtain 

v fA na~'vpdA = 0. (24) 
tta 

Imposition of the no-slip condition given by equation 
(3) allows us to express this result as 

V" (va> = 0 (25) 

and we see that the superficial volume averaged vel- 
ocity field is solenoidal. The superficial velocity is pre- 
ferred for solving problems because of its solenoidal 
characteristic; however there is often considerable 
confusion in the literature concerning the superficial 
and intrinsic velocities and in this work we will always 
be careful to distinguish these two velocities in terms 
of the nomenclature illustrated by equation (20). 

2.2. Momentum equation 
The superficial volume average of the Stokes' equa- 

tions can be expressed as 

0 = -- <Vp¢> + (nag) + <paVZva>. (26) 

It is permissible to ignore variations in pa and pa within 
the averaging volume so that this result takes the form 

0 = -<Vp~>+e~p~g+#~<V2v~> (27) 

and we can use the averaging theorem twice in order 
to obtain [14] 

0 = - V < p p )  +e~p~g+ppVe<vp> 

+ ~ n~" [--Ip~ +#~Vv~] dA. (28) 

Here one might want to note that the third term in 
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this result represents the Brinkman [ 15] correction and 
that the viscosity associated with this term is the fluid 
viscosity, p~, which need not be corrected in any way. 

While the superficial velocity is preferred because of 
its solenoidal characteristic, the intrinsic pressure is 
preferred because it more closely resembles the pres- 
sure that one could measure or the pressure that one 
could impose as a boundary condition. This requires 
that we make use of the analogous form of equation 
(20) for the pressure 

(Pc) = ee(Pe) ~ (29) 

in order to express equation (28) as 

0 = -eeV(pe)  e -  (pe)eV~e +eepeg+~eV2<ve) + 

ne~" [--Ipe +#eVve] da. (30) 
t~a 

This result can be simplified by means of a lemma 
obtained from equation (23) by letting W e be a 
constant. This lemma takes the form 

W e = - ~ ne~dA (31) 
~a 

and it allows us to express (pe)eVee as 

l f A  (p~)eV~ e = - ~ ne~(pe)~l~ dA. (32) 

When volume averaged quantities appear in gov- 
erning differential equations such as equation (25) or 
(28), it is understood that they are evaluated at the 
centroid of the averaging volume ; however, when they 
appear inside integrals confusion can result, thus we 
have been careful to note that (pe) e is evaluated at 
the centroid on the right hand side of equation (32). 
We can also use equation (31) with the gradient of the 
intrinsic velocity to obtain 

Vee'V(ve)e = - ~ n~o'V<v~)elx dA (33) 
B- 

a n d  when these two results are used with equation 
(30) the volume averaged Stokes' equations take the 
form [16, 17] 

0 = -- eeV(p ~ )e + e~peg +/~eV 2 (v e ) 

- ~ A W e )  • [ V ( ~  ~ <re>) ]  

+ ~ ne~" [ -  I(P~[~+,#- <p~)el~) 

+ ge (Vve Ix+y. -- V<ve )e [=)] dA. (34) 

Here we have been forced to introduce the intrinsic 
average velocity in order to arrange the integral in 
equation (30) in terms of quantities that appear in the 
closure problem for Darcy's law [14]. The first viscous 
term that appears in equation (34) is usually referred 
to as the Brinkman correction, and this term is often 
included in the analysis of flow in the boundary region 

between a porous medium and a homogeneous fluid 
or in the boundary region between a porous medium 
and a homogeneous solid. In such regions the second 
viscous term is the same order of magnitude as the 
Brinkman correction and one is not justified in 
neglecting #e(Vee) • IV(aft- 1 (Vf l ) ) ] .  W e  will refer to this 
latter term as the second Brinkman correction. A key 
point to remember about equation (34) is that no 
length-scale constraints have been imposed and this 
means that it is valid everywhere in the system illus- 
trated in Fig. 1. 

At this point it is convenient to divide equation (34) 
by ee and express the result in a compact form 

0 = -- V(pe) e + Peg + ~ ~ l'te V2 <ve) 

- # e ~ '  (We)" [V(e e ~ ( v e ) ) ] -  #eOe (35) 

in which the vector @e is defined by 

#e*e = -- ~ ne." [--l(pelx+y,-- (Pc)el,,) 

+pe(Vvelx+y-V<ve)elx)] dA. (36) 

It has been shown elsewhere [14] that • e has 
an especially simple form in a homogeneous porous 
medium provided that certain length-scale constraints 
are satisfied. In order to identify the length-scale 
constraints that must be imposed in order for @e to 
have a simple form, we define three length scales in 
terms of the following estimates 

We=O? eh 

o(A(V<pS)'  vv<pS= ) 

v v v < v y  = o(a(vv<vS)  
\ Lv2 f 

(37) 

These estimates are consistent with those given earlier 
by equation (13) and when the following three length- 
scale constraints are imposed 

r0 2 r0 2 
- - < < 1  << 1 •p<<r0 (38) 
L~Lpl 

one can prove [14, 16, 17] that • e is given by 

~e = Ke 1 "(ve) in the homogeneous o-region. 

(39) 

The first two constraints given in equation (38) are 
analytical in nature [16-18] and from those devel- 
opments one can deduce that r0 should be replaced by 
A when the disk illustrated in Fig. 1 is used in the 
averaging process. The third constraint in equation 
(38) is more intuitive in nature [19] ; however, recent 
numerical simulations [20-22] have verified that con- 
straint for spherical averaging volumes. On the basis 
of both analysis and intuition, we are inclined to 
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~¢o~ =- A,o + A,. (51) 

The volumes of the co- and q-regions contained in ~o~ 
are designated by V.o and V, and when equations (45) 
and (46) are integrated over these regions we can 
express the results as 

fA n,O'<v~>,~dA+f n~'<v~)o, d A = 0  (52) 
d Ao m 

IAn~. d A + |  dA = 0. (53) <v~>. <v~>. n,t~" 
J A~ 

Here we have used A ~  = A ~  to represent the area of 
the dividing surface contained within the volume Y~oo. 
and the convention associated with the unit normal 
vectors at the dividing surface is that n~, = -n .~ .  

Returning to equations (52) and (53). it is impor- 
tant to remember that the values of (v~>~ and <v~>, 
in the interfacial region are not necessarily equal to 
the actual physical value which is represented every- 
where by (vt~>. If we subtract equations (52) and (53) 
from equation (50). we can arrange the result in the 
following form 

fA~, ((V, >~, -- (vt~>~) dA n ~ "  

= I n~" (<v~>- <v~>~) dA 
~A 

÷ f n," ((v~> - <v~>.) dA (54) 
~A 

and this suggests, that we define an excess surface 
velocity according to 

3.2. Definition 

cn~ ' (g<v~>~) d~r 

= fAo, n~" ((vt~ > -- (v~>,o) dA 

+ f n~" ((v#>-- <vp>~) dA. (55) 
dA 

Here C represents a closed curve lying on the dividing 
surface and a represents the arc length along this 
curve. If the: thickness 6 is specified, one can think of 
equation (55) as defining the excess surface velocity 
<v~>~ ; otherwise, one must think of this relation as a 
definition of the product, 6<V~>s. Use of this relation 
with equation (54) leads to 

fA n'°"" (<v '>~-  <v'>") d A -  ~ c n~" (6<vB>~) d~r = 0 
t~ 

(56) 

and we can apply the surface divergence theorem [23] 
to obtain 

A [ n . o , - V ~  dA = 0. 

(57) 

In equation (56) we have used n~ to represent the unit 
normal vector that is tangential to the dividing surface 
and normal to the curve C, while V~ has been used to 
represent the surface gradient operator that is given 
explicitly in terms of the gradient operator and the 
projection tensor according to 

V~ = P'V, P = I-n~,n~,. ( 5 8 )  

Since the limits of integration over A, ,  are arbitrary, 
we extract the following jump condition from equa- 
tion (57) 

(<v~>~- <vp>,) "n~ = V~- (6<v¢>0 

at the co--r/interface. (59) 

While the surface velocity, <v~>~, may be important 
at the boundary between a porous medium and a 
homogeneous solid [9], and is certainly important at 
a fracture between two porous media [24], it would 
appear to be unimportant at the fluid-porous medium 
interface illustrated in Fig. 1. 

3.3. Momentum equation 
In order to develop the momentum jump condition, 

we recall that the following volume averaged momen- 
tum equation 

0 = -- V(p# >t~ + p~g + e~- ~ #~V 2 <vt~ > 

- -  ~./fl~f 1 (VEi l ) '  [V(ef l  1 <Vfl>)] --~fl~l~fl (60) 

is valid everywhere, and that in the co- and q-regions 
the momentum equations are given by 

co-region : 0 = - V(p~ >~, + p~g + ~-~ #~V 2 <v~ >~ 

- y ~ K ~ - ( v ~ > ~  (61) 

t/-region: 0 = -V(p~)~+pag+paV2(vp),.  (62) 

To derive the momentum jump condition, we follow 
the procedure given by equations (49)-(59) ; however, 
in order to integrate equation (60) over the volume 
~ ®  we need to arrange the Brinkman correction term 
into the form of a divergence and this leads to 

0 = -V<p~)  ~ +ppg+/~V"  (e~-~V<v~)) 

+ #:~- 1 (V In ep)2 <v#> - # p ~ .  (63) 

Here we have adopted the nomenclature indicated by 

(Vlnea) = = (Vlnet~) • (Vlnep). (64) 

In equation (61) we need not rearrange the first Brink- 
man correction since ea,o is a constant in that equation. 

To develop the jump condition we form the integral 
of equation (63) over ~ and the integrals of equa- 
tions (61) and (62) over V~ and 1/",, respectively. We 
then subtract the latter from the former to obtain 
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impose the following constraints for one-dimensional 
processes (in the sense of averages). 

A 2 A 2 
- - < <  1 << 1 ~,<<D. (40)  
L~Lp~ 

Here A represents the thickness of the disk illustrated 
in Fig. 1 while D represents the diameter. When the 
constraints indicated by either equation (38) or (40) 
are valid, the viscous term involving the gradient of 
the porosity (the second Brinkman correction) can 
obviously be set equal to zero since it will be negligible 
compared to the first Brinkman correction. 

#flgF 1 (Vgfl) " [V(E:F 1 (Vf l ) ) ]  = 0 

in the homogeneous co-region. (41) 

In equation (39) we have used K,o, to represent the 
Darcy's law permeability tensor and the use of equa- 
tions (39) and (41) in equation (31) leads to 

(va)o, = - KaY" ( V ( P e ) ~ - P a g - e ~  l#flV2(¥flSe, ) 
/za 

in the homogeneous o~-region. (42) 

This is Darcy's law with the first Brinkman correction ; 
however, when the length-scale constraints indicated 
by equation (38) are in effect the first Brinkman cor- 
rection makes a negligible contribution to equation 
(42). 

3. J U M P  CONDITION 

In this analysis we consider the large-scale aver- 
aging volume illustrated in Fig. 4 and note that the 
following forms of the volume averaged continuity 
and momentum equations are valid everywhere in the 
region under consideration. 

Fig. 4. Large-scale averaging volume. 

V" (v,> = 0 (43) 

0 = - V(p~) ~ + p~g + e~- ~ #pV 2 (vt~) 

- # a t  F ~ (Ve , )"  [ V ( ~ -  1 ( v ~ ) ) ]  - p , O p .  (44 )  

One should remember that no length-scale constraints 
have been imposed on these two equations, thus they 
are limited only by the form of the original point 
equations and boundary condition given by equation 
(3). The length-scale constraint indicated by equation 
(15) is required only to ensure that re, = (v , ) ,  in the 
homogeneous q-region so that the boundary condition 
indicated by equation (4) can be employed directly. 
For  one-dimensional processes the single length-scale 
constraint imposed on this analysis is given by equa- 
tion (18). 

Solution of these two equations to produce the vel- 
ocity and pressure fields would require a closed form 
of equation (44) and this can be avoided if an accept- 
able jump condition can be constructed. In the homo- 
geneous parts of the oJ- and q-regions we represent the 
governing equations as 

V'<v,>,~ = 0 in the ~o-region (45) 

0 = - V<p~ >~ + p~g + e ~  p~V: (v~ >~, 

-ltaK~-~ '(va)w in the ~o-region (46) 

V" (vB) . = 0 inthe ~/-region (47) 

O=-V(pa)~+pag+t~aV2(va)~ in the ~/-region. 

(48) 

In addition to using these equations outside the 
boundary region illustrated in Fig. 3, we will also use 
them inside the boundary region. When they are used 
inside the boundary region, quantities such as (v~)w 
and (p , )~  may not accurately predict the local volume 
averaged velocity and pressure. The errors generated 
by the use of equations (45)-(48) inside the boundary 
region will be corrected by means of the jump con- 
dition which ensures that equations (43) and (44) are 
satisfied on average. 

3.1. Continuity equation 
We begin the analysis of the jump conditions with 

the continuity equation and form the integral of equa- 
tion (43) over the volume ~V'~ that is illustrated in Fig. 
4. This leads to the integral condition 

,~ V . ( v ~ ) d V =  0 (49) 

which requires that equation (43) be satisfied on aver- 
aye. We can use the divergence theorem to express 
this result as 

f~t n" dA = 0. (50) <v~> 

The area ~1o~ can also be represented in terms of the 
bou.nding surfaces in the ~o- and q-regions according 
to 
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A~ n~" [-I(<ps>~ - <Ps>~) 

-t- y8 (e~-~ V<vs>o - V<vs>.)l dA 

= fAo, n~" [-I(<p8>8 - <Ps>~) 

+ #8 (e; t V(vs)  _ e~-ot V<v8 >~)] dA 

+ fAn,"  [-I(,(p8>8 - <Ps>~) 
q 

+/~8 (~- l V<v~" -- V<v8 >~)] dA 

--fvolas[*8 - K~-2 "<vs>~] dV 

- fv./~8 [(]Ds] d V 

+ fv~ [Yseti- ~ (V In e8) 2 <v 8)] d V 

+ fv. [/18~- l (V In e8) 2 (v 8 >] d V. (65) 

Each one of the integrals on the right hand side of this 
result contains an integrand that tends to zero in the 
homogeneous regions. For example, we know that ~8 
has the characteristics given by 

f K ~ .  <Vs>~ 
0 

in the homogeneous co-region 

in the homogeneous q-region 

(66) 

so that the integrands in the integrals over Vo and V, 
both tend to zero in the homogeneous parts of the co- 
and q-regions, respectively. This means that the terms 
on the right hand side of equation (65) can be rep- 
resented in terms of excess functions. 

3.4. Definitions 
We define an excess surface stress according to 

cn~ "6(T)s de 

= f no~" [--I( (ps)8-(ps)~,o)  
d A  

+/~a(e~: J V(va> - e~'~ V(v8 >o)] dA 

+ I n,,. [ - t ( < p y  - <ps>~) 
dm 

+/18(e~- ~ V(vs> - V(vs>,) ] dA 

and an excess bulk stress which is given by 

(67) 

IA~ ((T)B) dA n o r a °  

= f% #8 ((I)sK~-I "<v8 >~) d V+ I #8(O8) dV. 
dV~ 

(68) 

Finally the excess Brinkman stress is defined according 
to 

A~ n~." ((B>)dA = I~  [yse~-l(Vlnes)Z(vs>]dV. 

(69) 

Use of these three definitions leads to a momentum 
jump condition of the form 

B.C.1 

no," [ -  I((p8 )~ - (Ps>~) + P8 (e~-~ V(v8 >~, - V<v8 >,) l 

= Vs" (5<T>s)-n~."  ( < T > . ) + n o . -  ( ( a ) )  

at the co-q boundary (70) 

and various special cases of this result are available 
[7]. In addition to the boundary condition given by 
equation (70) we should remind the reader that the 
second boundary condition is given by 

B.C. 2 (v 8>~ = (vs) . at the co-q boundary. 
(71) 

If the excess surface and bulk stresses are neglected 
we obtain the following boundary condition 

3.5. Negligible excess stresses 
B.C. 1 

• 13 8 --1 n,o. [ -  I(<p 8 >o - <P8)7) + #8 (es* V(vs>~ 

- V ( v s ) , )  ] = 0 at the co-q boundary. (72) 

This boundary condition would be consistent with the 
use of equations (46) and (48) and would be referred 
to as the Brinkman solution [10] for the stress jump 
condition. For the uniform flow illustrated in Fig. 1, 
the normal component of equation (72) reduces to 

B.C. 1 (Ps)~ = <Ps)~ at the co-q boundary. 
(73) 

This result is routinely used without comment and it 
assumes that both the normal components of the vis- 
cous stresses in equation (72) are zero and that the 
normal components of the excess stresses in equation 
(70) are negligible. 

In the next section we will develop a usable form of 
the stress jump condition given by equation (70), and 
there we will see that the complexities associated with 
the excess stresses can be reduced to a relatively simple 
form containing a single adjustable parameter. The 
result will be significantly different from the jump 
condition of Beavers and Joseph [2] who developed a 
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condition that contained a jump in both the stress and 
the velocity. While the Beavers and Joseph model has 
enjoyed considerable success in the treatment of fluid 
mechanics problems, the velocity jump leaves much 
to be desired in terms of  heat transfer processes [25]. 

4. GENERAL FORM FOR THE EXCESS STRESS 

On the basis of the definitions of the excess surface 
stresses given by equations (67) and (68) we propose 
the following representations : 

4.1. Excess surface stress 
V~(6(T), = n~ r • [--I((p~)~ -- (p~),~) 

+kta(e~L~V(va)~-e~r~V(va)r)] "C (74) 

in which the tensor C is a dimensionless adjustable 
tensor coefficient on the order of unity. 

4.2. Excess bulk stress 

n ,  r • (T)B = 6/~D" [K~2 • (va) , ]  (75) 

in which D is a dimensionless adjustable tensor 
coefficient on the order of unity. In order to clarify 
the choice of these two representations, we consider 
the one-dimensional example based on the function 
(~Fa) that has the following property : 

( ( ~ ) , o  y <~ --6/2 
(q '~)  = ~ ((qJ~)r y ~> +3/2" (76) 

The excess function associated with (qJa) is defined 
by 

6<%)~x = f0/~ (<'ep)-  (,I,~)~) dy 

+J0 ( (Wa)-(~Fa)r )dY" (77) 

The form of this excess function is, of course, identical 
to the definitions given by equations (67)-(69). In Fig. 
5 we have plotted (Wa), (~Fa),o and (u/a)  r and from 
that figure we can see that 6(q~a),x is related to the 

dividing 
8tt~faee 

I 
I 
I 

............. ..[ 

I ~v,~o],~0 i (v,>~l,°0 

I 

I It y 
y=O 

Fig. 5. Determination of an excess function. 

difference between the two shaded areas, i.e. A~-A2. 
We can represent the excess function according to 

3('Va)ox = C(('Va)~ly=o-('Va)rly=o ) (78) 

in which C is an adjustable parameter. It should be 
clear that the difference between the two extrapolated 
values of (qJa) is an appropriate scaling factor; 
however, it does not  necessarily represent the complete 
functional dependence of 6(qu~)ox. 

4.3. Excess Brinkman stress 
Extracting a plausible representation for the excess 

Brinkman stress presents a problem because of the 
highly non-linear dependence upon the void fraction. 
If we restrict our thoughts to the tangential com- 
ponent  of the velocity we can argue that ~ 3 ( v ~ )  is a 
slowly varying function of position and this encour- 
ages us to express the integrand in equation (70) as 

#fl~- 1 (V In ea) 2 (va)  = #B (Vea) 2 (e~- 3 (va)).  (79) 

The idea that e~ -3 (va) is a slowly varying function is 
based on the form of the Blake-Kozeny correlation 
[26] and it suggests a representation of the excess 
Brinkman stress given by 

n~." <a> 

= #ar-~A-(eao~-~ar)E(e~3(va)~+e~3(va)~) (80) 

in which e~ 3 has only been included for clarity since 
this term is equal to one. 

Since the form of the excess surface stress is identical 
to the left hand side of equation (70), the effect of 
Vs" (6(T)s) will be lost in the stress jump condition 
because of the adjustable nature of the coefficients in 
equations (75) and (80), thus we can substitute these 
latter two equations into equation (70) to obtain 

n,or" [-I((p~ )~ - (pa)~) + v~(~;2 V(v~ )o - V(va )0)] 

= - /~afO.  [K~,o ~ • (va)~ ] 

at the co-r/interface. (8 l) 

Here we have set ear equal to one and at this point we 
are ready to extract the tangential component  of the 
jump condition. This is given by 

+ ~a(~; 2 V(va )~ - V(va)0] • ,~ 

= -Var2"  D" [Kh-J • (va),o ] 

+/~a3-12 • A" (ea,o - 1)2 (e~-3 (va)~ + (va)r) (82) 

and can be simplified by noting that nor" 2 is zero 
and that the velocities (va), o and (va) r are equal as 
indicated by equation (71). This leads to the following 
form : 

n~." (~;," V(v~)~ - V(va)r) • ;~ 

= [6-~2"A(ea~o - 1)2(e~o 3 + 1) 

- 6 2 .  D. K;o]]. (va)o, (83) 
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I f  we scale the thickness of  the interfacial region 
according to 5 = Ox/(Kpo), we can express the tan- 
gential component  of  our jump condit ion for the stress 
as 

d 
no,." (e~-2 V(va)~ -V(v#),)" 2 = • (Va)o, 

x/(K#,,,) 

(84) 

in which d is a dimensionless drag vector defined by 

d = ~/(K#o,)[6 -~ 2 • A(~p,,~ - 1)2 (e~ -3 + l) - 3 2 "  D" K~-2 ]. 

(85) 

For  the process illustrated in Fig. 1, we summarize 
the boundary cond~itions as 

B.C. 1 

- - ( v # ) , o  y = 0  
c3y Oy ~/(KB~ ) 

(86) 

B.C.2 (v~;,~ = (v~),  y = O. (87) 

Here we have used ,(va),o and (vB) . to represent the x- 
components  of  the two volume average velocity vec- 
tors and the dimensionless coefficient fl is given by 

fl = ~/(Ka,,,)[5-'2" A" 2(e8o,-- 1)2 (e~-2 + 1) 

-62.D.Kp2.2]. (88) 

Like the dimensionless drag vector d, we expect the 
dimensionless coefficient fl to be on the order of  one, 
and on the basis of  the nature of  excess functions as 
illustrated in Fig. 5, we can expect that fl may be 
either positive or  negative. In Part  II we will compare 
solutions of  equations (45)-(48), subject to the bound- 
ary conditions given by equations (86) and (87) with 
the experimental data of  Beavers and Joseph [2]. 

5. CONCLUSIONS 

In this study we have derived a stress jump con- 
dition for the boundary between a porous medium 
and a homogeneous; fluid. The development is based 
on a generally valid, non-local form of  the volume 
averaged Stokes' equations, and it requires exper- 
imental measurements to evaluate an undetermined 
parameter that naturally appears in the jump 
condition. The jump condit ion is constructed in order 
to connect Darcy 's  law with the Brinkman correction 
to the Stokes' equations, and this leads to a volume 
averaged velocity field that is continuous. 
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